Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 95, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561797

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS: We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS: We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS: Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Inmunoterapia , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 486-493, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565517

RESUMEN

OBJECTIVE: To assess the value of combined chromosomal karyotyping and chromosomal microarray analysis (CMA) and/or copy number variation sequencing (CNV-seq) for the prenatal diagnosis for women with advanced maternal ages, and to explore the challenges of prenatal genetic counseling brought by the types of fetal CNVs and uncertainty of related phenotypes. METHODS: A retrospective analysis was carried out on 1 841 women with advanced maternal age who underwent interventional prenatal diagnosis at the Prenatal Diagnosis Center of Xiamen University Affiliated Women and Children's Hospital from January 2017 to December 2020. Routine chromosomal karyotyping analysis and CMA/CNV-seq detection were carried out. RESULTS: CMA/CNV-seq had detected pathogenic variants in 2 cases which had failed karyotyping analysis. Two hundred and twenty one fetal chromosomal abnormalities were detected by karyotyping analysis, among which 187 were detected by CMA/CNV-seq. CMA/CNV-seq analysis of 23 cases with balanced chromosome structural aberrations and 10 cases with low proportion mosaicisms (including a marker chromosome) had yielded a negative result. In addition, 26 cases (26/1 841, 1.4%) with pathogenic CNVs were discovered among those with a normal karyotype, of which 13 (50.0%) were recurrent CNVs associated with neurocognitive impairment, with 22q11.21 microdeletions and microduplications being the most common types (26.92%). CONCLUSION: The combination of karyotyping analysis and CMA/CNV-seq not only increased the rate of prenatal diagnosis, but also complemented with each other, which has facilitated genetic counseling and formulation of prenatal diagnosis strategy for the affected families.


Asunto(s)
Variaciones en el Número de Copia de ADN , Mujeres Embarazadas , Niño , Femenino , Embarazo , Humanos , Edad Materna , Estudios Retrospectivos , Diagnóstico Prenatal , Aberraciones Cromosómicas , Análisis por Micromatrices , Síndrome
3.
Cell Signal ; 119: 111170, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604344

RESUMEN

Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Glucosa , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones Endogámicos C57BL , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Glucosa/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Cadmio/toxicidad , Miocardio/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Cloruro de Cadmio
4.
Opt Express ; 32(6): 8715-8722, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571122

RESUMEN

Silicon planar waveguides are designed to maximize the wavelength conversion efficiency via the use of Raman-enhanced four-wave mixing in the telecom band. By investigating the dispersion properties of various rib waveguide structures, the optimum etch depth and width are selected to obtain efficient phase-matching for a continuous-wave pump at 1545 nm. The design benefits from good fabrication tolerance in the structural parameters, which are well within the precision of standard lithography and etching processes. Using the optimized waveguides, simulations show that it is possible to reach conversion efficiencies as high as ∼45 dB for waveguide lengths as short as 4.6 cm, with a pump power of only 130 mW. This enhancement in the conversion efficiency is about 50 dB higher than conventional values for FWM in integrated silicon photonic systems, highlighting the benefits of exploiting the coupling between the two nonlinear processes.

5.
J Hazard Mater ; 469: 133825, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430587

RESUMEN

Permeable reactive barrier (PRB) is an effective in-situ technology for groundwater remediation. The important factors in PRB design are the width and reactive material. In this study, the beaded coal mine drainage sludge (BCMDS) was employed as the filling material to adsorb arsenic pollutants in groundwater, aiming to design the width of PRB. The design methods involving traditional continue column experiments and empirical formulas, as well as machine learning (ML) predictions and statistical methods, which are compared with each other. Traditional methods are determined based on breakthrough curves under several conditions. ML method has advantages in predicting the width of mass transfer zone (WMTZ), which simultaneously consider the characteristics of material, pollutant, and environmental conditions, with data collected from articles. After data preprocessing and model optimizing, selected the XGBoost algorithm based on the high accuracy, which shows good prediction for WMTZ (R2 = 0.97, RMSE = 0.15). The experimentally derived WMTZ values were also used to validate the predictions, demonstrating the ML low error rate of 7.04 % and the feasibility. Subsequent statistical analysis of multiple linear regression (MLR) showed the error rate of 39.43 %, interpret superiority of ML due to the complexity of influencing factors and the insufficient precision of math regression. Compared to traditional width design methods, ML can improve design efficiency and save experimental time and manpower. Further expansion of the dataset and optimization of algorithms could enhance the accuracy of ML, overcoming existing limitations and gaining broader applications.

6.
Sleep Med ; 117: 177-183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554533

RESUMEN

OBJECTIVES: To explore the relationship between nocturnal levels of stress-related hormones and different sleep-wake states in chronic insomnia disorder (CID) patients. METHODS: Thirty-three CID patients and 34 good sleepers were enrolled and completed assessment of sleep log, Pittsburgh Sleep Quality Index and Insomnia Severity Index. During a-overnight polysomnography monitoring, the patients' vein bleeds were continually collected at different time points (pre-sleep, deep-sleep, 5-min or 30-min waking, and morning waking-up). The control subjects' bleeds were collected only at 22:00 and morning waking-up. The serum hormones were detected using enzyme-linked immunosorbent assay. RESULTS: Compared with at pre-sleep, the level of cortisol was significantly higher at morning waking-up respectively in two-group subjects (Ps < 0.001), with insignificant inter-group differences in cortisol, corticotropin releasing hormone and copeptin at the two time-points. In the patients, the nocturnal secretion curves of three hormones were similar, with the highest concentration at morning waking-up, followed by 30-min waking, 5-min waking, pre-sleep, and deep-sleep. The patients' cortisol (Z = 79.192, P < 0.001) and copeptin (Z = 12.333, P = 0.015) levels were statistically different at different time-points, with higher cortisol at morning waking-up relative to deep-sleep, pre-sleep and 5-min waking (Ps < 0.05), and at 30-min waking relative to deep-sleep and pre-sleep (Ps < 0.05), and higher copeptin at morning waking-up relative to deep-sleep (P < 0.05). CONCLUSIONS: In CID, the nocturnal wakes were instantaneously accompanied by high level, and deep sleep was accompanied by the lowest levels, of stress-related hormones, especially in cortisol, supporting the insomniac hypothesis of increased nocturnal pulse-release of cortisol.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Proyectos Piloto , Hidrocortisona , Sueño , Polisomnografía
7.
Nature ; 628(8007): 391-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408487

RESUMEN

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Asunto(s)
Tipificación del Cuerpo , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Cresta Neural/citología , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología
8.
NPJ Vaccines ; 9(1): 22, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310094

RESUMEN

Here we report on the development and comprehensive evaluations of an mRNA vaccine for chronic hepatitis B (CHB) treatment. In two different HBV carrier mouse models generated by viral vector-mediated HBV transfection (pAAV-HBV1.2 and rAAV8-HBV1.3), this vaccine demonstrates sufficient and persistent virological suppression, and robust immunogenicity in terms of induction of strong innate immune activation, high-level virus-specific antibodies, memory B cells and T cells. mRNA platform therefore holds prospects for therapeutic vaccine development to combat CHB.

9.
Small Methods ; : e2301784, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415975

RESUMEN

Tribocatalysis is vitally important for electrochemistry, energy conservation, and water treatment. Exploring eco-friendly and low-cost tribocatalysts with high performance is crucial for practical applications. Here, the highly efficient tribocatalytic performance of FeOOH nanorods is reported. The factors related to the tribocatalytic activity such as nanorod diameter, surface area, and surface roughness are investigated, and the diameter of the FeOOH nanorods is found to have a significant effect on their tribocatalytic performance. As a result, under ultrasonic excitation, the optimized FeOOH nanorods exhibit superior tribocatalytic degradation toward rhodamine B (RhB), acid orange 7, methylene blue, methyl orange dyes, and their mixture. The RhB and mixed dyes are effectively degraded within 20 min (k = 0.179 min-1 ) and 35 min (k = 0.089 min-1 ), respectively, with the FeOOH nanorods showing excellent reusability. Moreover, antibiotics, such as tetracycline hydrochloride, phenol, and bisphenol A are efficiently degraded. Investigation of the catalytic mechanism reveals that the friction-generated h+ as well as these yielded •OH and •O2 - active radicals participate in the catalytic reaction. This work not only shed light on the design of high-performance tribocatalyst but also demonstrates that by harvesting mechanical energy, the FeOOH nanorods are promising materials for removing organic contaminants in wastewater.

10.
Int J Behav Nutr Phys Act ; 21(1): 17, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355565

RESUMEN

BACKGROUND: How physical activity (PA) and different sleep traits and overall sleep pattern interact in the development of Parkinson's disease (PD) remain unknown. OBJECTIVE: To prospectively investigate the joint associations of PA and sleep pattern with risk of PD. METHODS: Included were 339,666 PD-free participants from the UK Biobank. Baseline PA levels were grouped into low (< 600 MET-mins/week), medium (600 to < 3000 MET-mins/week) and high (≥ 3000 MET-mins/week) according to the instructions of the UK Biobank. Healthy sleep traits (chronotype, sleep duration, insomnia, snoring, and daytime sleepiness) were scored from 0 to 5 and were categorized into "ideal sleep pattern" (≥ 3 sleep scores) and "poor sleep pattern" (0-2 sleep scores). Hazard ratios (HRs) and 95% confidence intervals (CIs) of PD were estimated by Cox proportional hazards models. RESULTS: During a median of 11.8 years of follow-up, 1,966 PD events were identified. The PD risk was lower in participants with high PA (HR = 0.73; 95% CI: 0.64, 0.84), compared to those with low PA; and participants with ideal sleep pattern also had a lower risk of PD (HR = 0.78; 95% CI: 0.69, 0.87), compared to those with poor sleep pattern. When jointly investigating the combined effect, participants with both high PA and ideal sleep pattern had the lowest risk of incident PD (HR = 0.55; 95% CI: 0.44, 0.69), compared to those with low PA and poor sleep pattern; notably, participants with high PA but poor sleep pattern also gained benefit on PD risk reduction (HR = 0.74; 95% CI: 0.55, 0.99). CONCLUSIONS: Both high PA and ideal sleep pattern were independently associated with lower risk of developing PD, and those with both high PA level and ideal sleep pattern had the lowest risk. Our results suggest that improving PA levels and sleep quality may be promising intervention targets for the prevention of PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Estudios de Cohortes , Enfermedad de Parkinson/epidemiología , Sueño , Ejercicio Físico , Conducta de Reducción del Riesgo , Factores de Riesgo
11.
Nat Commun ; 15(1): 5, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228612

RESUMEN

Somatic cell nuclear transfer (SCNT) successfully clones cynomolgus monkeys, but the efficiency remains low due to a limited understanding of the reprogramming mechanism. Notably, no rhesus monkey has been cloned through SCNT so far. Our study conducts a comparative analysis of multi-omics datasets, comparing embryos resulting from intracytoplasmic sperm injection (ICSI) with those from SCNT. Our findings reveal a widespread decrease in DNA methylation and the loss of imprinting in maternally imprinted genes within SCNT monkey blastocysts. This loss of imprinting persists in SCNT embryos cultured in-vitro until E17 and in full-term SCNT placentas. Additionally, histological examination of SCNT placentas shows noticeable hyperplasia and calcification. To address these defects, we develop a trophoblast replacement method, ultimately leading to the successful cloning of a healthy male rhesus monkey. These discoveries provide valuable insights into the reprogramming mechanism of monkey SCNT and introduce a promising strategy for primate cloning.


Asunto(s)
Técnicas de Transferencia Nuclear , Semen , Embarazo , Animales , Femenino , Masculino , Trofoblastos , Clonación de Organismos , Blastocisto , Reprogramación Celular/genética
12.
Emerg Microbes Infect ; 13(1): 2309985, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38258878

RESUMEN

Herpes zoster remains an important global health issue and mainly occurs in aged and immunocompromised individuals with an early exposure history to Varicella Zoster Virus (VZV). Although the licensed vaccine Shingrix has remarkably high efficacy, undesired reactogenicity and increasing global demand causing vaccine shortage urged the development of improved or novel VZV vaccines. In this study, we developed a novel VZV mRNA vaccine candidate (named as ZOSAL) containing sequence-optimized mRNAs encoding full-length glycoprotein E encapsulated in an ionizable lipid nanoparticle. In mice and rhesus macaques, ZOSAL demonstrated superior immunogenicity and safety in multiple aspects over Shingrix, especially in the induction of strong T-cell immunity. Transcriptomic analysis revealed that both ZOSAL and Shingrix could robustly activate innate immune compartments, especially Type-I IFN signalling and antigen processing/presentation. Multivariate correlation analysis further identified several early factors of innate compartments that can predict the magnitude of T-cell responses, which further increased our understanding of the mode of action of two different VZV vaccine modalities. Collectively, our data demonstrated the superiority of VZV mRNA vaccine over licensed subunit vaccine. The mRNA platform therefore holds prospects for further investigations in next-generation VZV vaccine development.


Asunto(s)
Vacuna contra el Herpes Zóster , Herpes Zóster , Animales , Ratones , Macaca mulatta , Vacunas de ARNm , Herpes Zóster/prevención & control , Herpesvirus Humano 3
13.
Water Res ; 251: 121097, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218071

RESUMEN

Permeable reactive barrier (PRB) is an important groundwater treatment technology. However, selecting the optimal reactive material and estimating the width remain critical and challenging problems in PRB design. Machine learning (ML) has advantages in predicting evolution and tracing contaminants in temporal and spatial distribution. In this study, ML was developed to design PRB, and its feasibility was validated through experiments and a case study. ML algorithm showed a good prediction about the Freundlich equilibrium parameter (R2 0.94 for KF, R2 0.96 for n). After SHapley Additive exPlanation (SHAP) analysis, redefining the range of the significant impact factors (initial concentration and pH) can further improve the prediction accuracy (R2 0.99 for KF, R2 0.99 for n). To mitigate model bias and ensure comprehensiveness, evaluation index with expert opinions was used to determine the optimal material from candidate materials. Meanwhile, the ML algorithm was also applied to predict the width of the mass transport zone in the adsorption column. This procedure showed excellent accuracy with R2 and root-mean-square-error (RMSE) of 0.98 and 1.2, respectively. Compared with the traditional width design methodology, ML can enhance design efficiency and save experiment time. The novel approach is based on traditional design principles, and the limitations and challenges are highlighted. After further expanding the data set and optimizing the algorithm, the accuracy of ML can make up for the existing limitations and obtain wider applications.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Adsorción
14.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
15.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961125

RESUMEN

Emerging human pluripotent stem cell (hPSC)-based embryo models are useful for studying human embryogenesis. Particularly, there are hPSC-based somitogenesis models using free-floating culture that recapitulate somite formation. Somitogenesis in vivo involves intricately orchestrated bio-chemical and -mechanical events. However, none of the current somitogenesis models controls biochemical gradients or biomechanical signals in the culture, limiting their applicability to untangle complex biochemical-biomechanical interactions that drive somitogenesis. Here we report a new human somitogenesis model by confining hPSC-derived presomitic mesoderm (PSM) tissues in microfabricated trenches. Exogenous microfluidic morphogen gradients imposed on PSM cause axial patterning and trigger spontaneous rostral-to-caudal somite formation. A mechanical theory is developed to explain the size dependency between somites and PSM. The microfluidic somitogenesis model is further exploited to reveal regulatory roles of cellular and tissue biomechanics in somite formation. This study presents a useful microengineered, hPSC-based model for understanding the bio-chemical and -mechanical events that guide somite formation.

16.
Genes (Basel) ; 14(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003034

RESUMEN

Goat intramuscular fat (IMF) deposition is precisely regulated by many key genes as well as transcription factors. Nevertheless, the potential of the regulators of goat IMF deposition remains undefined. In this work, we reported that the transcription factor FOS is expressed at a low level at the early differentiation stage and at a high level in late differentiation. The overexpression of FOS inhibited intramuscular adipocyte lipid accumulation and significantly downregulated the expressions of PPARγ, C/EBPß, C/EBPα, AP2, SREBP1, FASN, ACC, HSL, and ATGL. Consistently, the knockdown of FOS, facilitated by two distinct siRNAs, significantly promoted intramuscular adipocyte lipid accumulation. Moreover, our analysis revealed multiple potential binding sites for FOS on the promoters of PPARγ, C/EBPß, and C/EBPα. The expression changes in PPARγ, C/EBPß, and C/EBPα during intramuscular adipogenesis were opposite to that of FOS. In summary, FOS inhibits intramuscular lipogenesis in goats and potentially negatively regulates the expressions of PPARγ, C/EBPß, and C/EBPα genes. Our research will provide valuable data for the underlying molecular mechanism of the FOS regulation network of intramuscular lipogenesis.


Asunto(s)
Cabras , PPAR gamma , Animales , Cabras/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Adipocitos/metabolismo , Factores de Transcripción/genética , Lípidos
17.
Am J Cancer Res ; 13(10): 4508-4530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970339

RESUMEN

Paget's disease (PD) of the breast is a rare underlying malignant tumor. Approximately 50% to 60% of patients with mammary PD are concurrently diagnosed with invasive ductal carcinoma (PD-IDC), a condition associated with a worse prognosis than IDC without PD. Thus far, there has been a lack of an accurate and efficient prognostic model for PD-IDC, and the factors influencing the effectiveness of chemotherapy and radiotherapy for these patients remain unknown. In this study, we developed a web-based nomogram based on the data from the Surveillance Epidemiology and End Results (SEER) database. We subjected the model to a series of validation methods, including area under the curve (AUC) values, receiver operating characteristic curve (ROC) analysis, calibration curves, and decision curve analysis (DCA). Our results demonstrated that our model exhibited high discrimination, accuracy, and clinical applicability in predicting the overall survival (OS) of patients with PD-IDC (testing set: three- and five-year AUCs, 0.831 and 0.841, respectively). To further validate our nomogram, we used external data from both our institution and sister hospitals (external data: three- and five-year AUCs, 0.892 and 0.914, respectively). Multivariable Cox regression analysis identified several independent unfavorable prognostic factors for the OS of patients with PD-IDC, including increasing age, high grade, widowed status, higher T stages, and the presence of bone metastases. Furthermore, propensity score matching (PSM)-adjusted analysis was conducted, revealing that chemotherapy did not significantly improve the survival of patients with PD-IDC across molecular subtypes, except for those in the grade III/IV group, where it improved both OS and breast cancer-specific survival (BCSS). Additionally, our findings indicated that only patients with PD-IDC with T4 and N3 stages benefited from radiotherapy, leading to improvements in both OS and BCSS. In conclusion, we have comprehensively analyzed the clinical characteristics and prognosis of patients with PD-IDC, culminating in the development of a user-friendly web-based nomogram for predicting their survival. Our predictive model is not only highly accurate but also offers simplicity, making it accessible for healthcare providers and patients. Furthermore, our stratified analysis highlights that the pathological grade, rather than the molecular subtype, plays a pivotal role in determining the efficacy of chemotherapy in improving the prognosis for patients with PD-IDC, while radiotherapy confers survival benefits to patients with PD-IDC in T4 and N3 stages.

18.
Diabetes Metab Syndr Obes ; 16: 3147-3160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842336

RESUMEN

Background: As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomics technique. Methods: Thirty-six patients enrolled in this study were divided into two groups: 18 T2DM patients without DPN (T2DM group) and 18 T2DM patients with DPN (DPN group). Serum metabolites were measured via 1H-NMR spectroscopy. Bioinformatic approaches including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), independent sample t-test, Fisher's test, Pearson and Spearman correlation analysis, Stepwise multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were used to identify the potential altered serum biomarkers. Results: A total of 20 metabolites were obtained and further analyzed. Formate was identified as the only potential biomarker that decreased in the DPN group with statistical significance after multiple comparisons (p<0.05). Formate also displayed a negative relationship with some elevated clinical markers in DPN. ROC curve analysis showed a good discriminative ability for formate in DPN with an area under the curve (AUC) value of 0.981. Conclusion: Formate could be considered a potential serum metabolic biomarker for DPN. The reduced level of formate in DPN may be associated with mitochondrial dysfunction and gut microbiota alteration. Monitoring the level of serum formate would be an important strategy for the early diagnosis of DPN and a supplement of formate may be a promising treatment for DPN in the future.

19.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687147

RESUMEN

Crystallization selectivity is an important principle in polymorph control. Ribavirin Form I, Form II, DMSO solvate, and amorphous ribavirin are prepared, and the short-range order similarities between these solid forms and ribavirin aqueous solution and DMSO solution are compared via mid-frequency Raman difference spectra (MFRDS). The crystallization process from amorphous ribavirin to Form I and from solution to amorphous phase is explained. Reasons for the difficulty in preparing the DMSO solvate are proposed. The rationale provided for the crystallization selectivity provides a foundation for the synthesis of metastable phases with a robust and convenient method.

20.
Nat Commun ; 14(1): 6016, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758697

RESUMEN

Region-specific gut spheroids are precursors for gastrointestinal and pulmonary organoids that hold great promise for fundamental studies and translations. However, efficient production of gut spheroids remains challenging due to a lack of control and mechanistic understanding of gut spheroid morphogenesis. Here, we report an efficient biomaterial system, termed micropatterned gut spheroid generator (µGSG), to generate gut spheroids from human pluripotent stem cells through mechanically enhanced tissue morphogenesis. We show that µGSG enhances the biogenesis of gut spheroids independent of micropattern shape and size; instead, mechanically enforced cell multilayering and crowding is demonstrated as a general, geometry-insensitive mechanism that is necessary and sufficient for promoting spheroid formation. Combining experimental findings and an active-phase-field morphomechanics theory, our study further reveals an instability-driven mechanism and a mechanosensitive phase diagram governing spheroid pearling and fission in µGSG. This work unveils mechanobiological paradigms based on tissue architecture and surface tension for controlling tissue morphogenesis and advancing organoid technology.


Asunto(s)
Materiales Biocompatibles , Células Madre Pluripotentes , Humanos , Biofisica , Organoides , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA